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Abstract. We propose a way of creating product maps with self-organizing 
maps (SOMs) for purchase decision making. We previously proposed a way of 
purchase decision support using SOMs and the Analytic Hierarchy Process 
(AHP). We provided several class boundaries, which divided the input features 
into several classes before creating self-organizing product maps. Because the 
number of classes and their boundaries depended on the person classifying the 
classes, the product maps were not always the same. In this paper, we first 
provide two class boundaries, which divide the range between the maximum 
and minimum of an input feature value into three equal parts. Second, we create 
self-organizing product maps using the classified data inputs. We applied our 
way to five kinds of products and confirmed its effectiveness. 

Keywords: product maps, self-organizing maps, Analytic Hierarchy Process, 
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1      Introduction 

As reported by [Kotler 2002], marketing researchers have developed a stages model 
of the buying decision process. The consumer passes through five stages: problem 
recognition, information search, evaluation of alternatives, purchase decision, and 
postpurchase behavior. Five successive sets are involved in the consumer decision 
making. The first set is the total set of brands available to the consumer. The 
individual consumer knows only a subset of these brands (awareness set). Some 
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brands meet the initial buying criteria (consideration set). As the person gathers more 
information, only a few brands will remain as strong contenders (choice set). The 
brands in the choice set might all be acceptable. The person makes a final choice from 
this set. Several intelligent decision support systems (DSSs) have been proposed to 
solve the variety of problems related to making decisions (e.g., [Park 2002], [Riordan 
2002], [Kohara 2002], [Ha 2003], [Walle 2003], [Suka 2003], [Kohara 2006]). 

We previously proposed a way of purchase decision support [Kohara 2006] using 
self-organizing maps (SOMs) [Kohonen 1995] and the Analytic Hierarchy Process 
(AHP) [Saaty1980]. First, we divided many products (total set) into several clusters 
using SOM. Second, we selected some alternatives (choice set) using the product 
maps. Finally, we made a final choice from the alternatives using AHP. As an 
example of real-world applications, we applied our way to the problem of buying a 
personal computer (PC). We considered 120 kinds of notebook PCs sold in Japan in 
June 2004. We clustered these PCs using the following features: CPU speed (GHz), 
main memory capacity (MB), HDD storage capacity (GB), weight (kg), price (yen), 
battery life (hours), and so on. We used these features in two ways: continuous (or 
original) and classified data input. For classifying the data of CPU speed, we divided 
the CPUs into three classes: under 1, over 1 to 2, and over 2 GHz. For classifying the 
data of the main memory capacity, we divided the capacities into two classes: 256 and 
512 MB. For classifying the data of the HDD storage capacity, we divided the storage 
capacity into three classes: under 40, over 40 to 60, and over 60 GB. For classifying 
the data of weight, we divided the weight into five classes: under 1, over 1 to 2, over 2 
to 3, over 3 to 4, and over 4 kg. For classifying the data of price, we divided the price 
into six classes: under 100, over 100 to 150, over 150 to 200, over 200 to 250, over 
250 to 300, and over 300 thousand yen. For classifying the data of battery life, we 
divided the life into six classes: under 1, over 1 to 2, over 2 to 3, over 3 to 4, over 4 to 
5, and over 5 hours. We inputted the data into SOM and created PC maps using SOM-
Ward clustering of Viscovery SOMine 4.0 software. SOM-Ward clustering is a two-
level clustering approach that combines the SOM and Ward’s clustering algorithm 
([Vesanto 2000], [Yao 2010]). Figures 1 and 2 show self-organizing map and an 
example of component map of PCs with classified data inputs, respectively. Figures 3 
and 4 show self-organizing map and an example of component map of PCs with 
continuous (or original) data inputs, respectively. There were five clusters in Figure 1. 
When inspecting component maps, the feature of each cluster is clear. For example, 
when inspecting “under 1 GHz (1-GHz)” component map (see Figure 2), we 
understand that one of the features of Cluster 5 is that CPU speed is under 1 GHz. In 
Figure 2, originally red color (here, black) neurons correspond to under 1 GHz class 
and originally blue color (here, dark grey) neurons correspond to the other class.  

There were four clusters in Figure 3. In CPU (GHz) component map of Figure 4, 
originally red (here, black) neurons correspond to 2.6 and more GHz and originally 
blue (here, dark grey) neurons correspond to 0.9 GHz CPU speed. Originally green 
and yellow (here, light grey) neurons correspond to intermediate values of CPU 
speed. When inspecting CPU component map of Figure 4, the feature of each cluster 
is not clear. So, classified data input is better than continuous (or original) data input 
for clustering PCs. From now, we used classified data input only. We inspected every 
component map and understand that features of Clusters 1 to 5 are as in Table 1. 
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Fig. 1. Self-organizing map of PCs in 2004 with classified data inputs 

 
Fig. 2. Component maps of PCs in 2004 with classified data inputs 
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Fig. 3. Self-organizing map of PCs in 2004 with continuous data inputs 

  

 

Fig. 4. Component maps of PCs in 2004 with continuous data inputs 

Table 1. Main features of PCs in 2004 in each cluster with classified data inputs. 

   Features Main feature 
Cluster 1 1 to 2 GHz (CPU), 40 to 60 GB (HDD), 

3 to 4 Kg (weight), 150 to 200 thousand yen 
(price) 

High performance 

Cluster 2 under 40 GB (HDD), 256 MB (main memory),  
100 to 150 thousand yen (price) 

Low performance 
and low price 

Cluster 3 over 60 GB (HDD), 512 MB (main memory),  
over 200 thousand yen (price) 

Highest performance 
and high price 

Cluster 4 1 to 2 Kg (weight), over 4 hours (battery life) High mobility 
Cluster 5 under 1 GHz (CPU), under 1 Kg (weight),  

150 to 200 thousand yen (price) 
Small size 
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Previously [Kohara 2006], we provided several class boundaries which divide 
input features into several classes. Because the number of classes and their boundaries 
depended on a person, the product maps were not always the same. In this paper, we 
first provide two class boundaries that divide the range between the maximum and 
minimum of an input feature value into three equal parts. Second, we create self-
organizing product maps using the classified data inputs. We applied our way to five 
kinds of products (personal computers, digital cameras, automobiles, liquid crystal 
televisions and electronic dictionaries) and confirmed its effectiveness.  

2      Creating PC Maps with SOM 

The SOM algorithm is based on unsupervised, competitive learning [Kohonen 1995]. 
It provides a topology preserving mapping from the high dimensional space to map 
units. Map units, or neurons, usually form a two-dimensional lattice and thus the 
mapping is a mapping from high dimensional space onto a plane. The property of 
topology preserving means that the mapping preserves the relative distance between 
the points. Points that are near each other in the input space are mapped to nearby 
map units in the SOM. The SOM can thus serve as a cluster analyzing tool of high-
dimensional data.  

When we create self-organizing product maps with classified data inputs, we input 
1 to the SOM if an input feature value belongs to the class. Otherwise, we input 0 to 
the SOM. Here, we propose a way to provide two class boundaries. We decided that 
the number of classes is generally three: small, middle and large. We provide two 
points that divide the range between the maximum (max) and minimum (min) of an 
input feature value into three equal parts. Two points (1/3 and 2/3 points) are 
calculated as follows. 

1/3 point:  min + (max – min)/3, 2/3 point:  min + 2(max – min)/3 
When we decide the max value, we ignore product data with an extremely large 

value (over 1.5 times the value of the 90% point) to avoid the influence of an outlier. 
This classification way does not mean that we remove the product data when we 
create self-organizing product maps. 

Table 2. 1/3 and 2/3 points of PC features. 

  Minimum 1/3 point 2/3 point Maximum 
CPU speed (GHz) 1.06 1.37 1.69 2 
Main memory (MB) 512 683 853 1024 
HDD storage (GB) 60 147 233 320 
Weight (kg) 0.898 2.232 3.566 4.9 
Battery life (hours) 0.9 5.6 10.3 15 
Price (yen) 108,000 188,667 269,333 350,000 
Monitor size (inch) 10.4 12.6 14.8 17 
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74 personal computers 

Fig. 5. Three classes of CPU speed (GHz) divided by the 1/3 and 2/3 points. 

We considered 74 kinds of notebook PCs sold in Japan in 2006. We clustered these 
PCs according to the following features: CPU speed (GHz), main memory capacity 
(MB), HDD storage capacity (GB), weight (kg), price (yen), battery life (hours), and 
so on. For example, two class boundaries of CPU speed (GHz) are shown in Figure 5. 
The max and min are 2 and 1.06 GHz, respectively, and the 1/3 and 2/3 points are 
1.37 and 1.69 GHz, respectively. Therefore, for the classified data of CPU speed, we 
divided the data into three classes: under 1.37, 1.38 to 1.68, and over 1.69 GHz. The 
1/3 and 2/3 points of the PC features are shown in Table 2. We did not ignore any 
data to assign the 1/3 and 2/3 points of all PC features. 

 

 
Fig. 6.  Self-organizing map of PCs in 2006 with our classified data inputs. 

We input each classified data to SOM and created PC maps in 2006 (Figure 6). 
Figure 6 shows five clusters: P1 to P5. We decided empirically that the number of 
clusters is around five. We adjusted the number depending on the resulting map. 
Examples of the component maps are shown in Figure 7. A component map shows 
each component value of the product map. The upper three maps of Figure 7 
correspond to weight: under 2.232 kg, 2.233 to 3.565 kg and over 3.566 kg. In the 
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“under 2.232 kg” component map, the originally red (here, black) neurons correspond 
to the under 2.232 kg class and the originally blue (here, dark gray) neurons 
correspond to the other class. Weight value of cluster P2 is under 2.232. The lower 
three maps correspond to battery life: under 5.6 hours, 5.7 to 10.2 hours and over 10.3 
hours. “5.7 to 10.2 hours” and “10.3 hours” component maps cover cluster P2. 
Battery life value of cluster P2 is over 5.6 ours. When inspecting these component 
maps, we understand that the features of cluster P2 are light weight (under 2.232 kg) 
and long battery life (over 5.6 hours). Therefore, mobile PCs belong to cluster P2. We 
inspected every component map to understand that the features of PCs in clusters P1 
to P5 are as shown in Table 3. Then, we examined whether every PC in each cluster 
exactly corresponds to the features, one by one. In Table 3, the underlined features are 
indispensable and more than 50% of the other features are necessary to judge that a 
PC exactly corresponds to the feature. For example, we judge a PC in cluster P2 as 
exactly mobile when its weight is under 2.232 kg and its battery life is over 5.6 hours. 
We judge a PC in cluster P4 as having low performance and low price when its price 
is under 188,667 yen and its main memory size is under 683 MB or its HDD size is 
under 147 GB. We judge a PC in cluster P1 as having high CPU speed and heavy 
weight when its CPU speed is over 1.38 GHz and its weight is over 2.233 kg. The 
accuracy of each cluster is also shown in Table 3. The total accuracy is 95.9%. 

Table 3. Main features of PCs in 2006 in each cluster. 

Cluster # 
(# of products) 

Features Main feature Accuracy 

Cluster P1 (25) over 1.38 GHz (CPU), 
over 2.233 kg (weight) 

High CPU speed 
and heavy weight 

 25/25 

Cluster P2 (18) under 2.232 kg (weight), 
over 5.6 hours (battery life) 

High mobility 18/18 

Cluster P3 (13) over 1.38 GHz (CPU), 
over 853 MB (main memory), 
over 148 GB (HDD), 
over 14.8 inches (monitor size) 

High performance 11/13 

Cluster P4 (15) under 683 MB (main memory), 
under 147 GB (HDD), 
under 188,667 yen (price) 

Low performance, 
low price 

14/15 

Cluster P5 (3) over 1.69 GHz (CPU), 
over 853 MB (main memory), 
over 269,333 yen (price) 

Highest erformance 
and high price 

3/3 

Total (74)   71/74 = 95.9% 
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Fig. 7. Examples of component maps of PCs in 2006 with our classified data inputs. 

3      Applying Our Way to Other Products 

 We applied our way to other products sold in Japan: 123 digital cameras in 2006, 142 
automobiles in 2006, 60 liquid crystal TVs in 2006, 67 electronic dictionaries in 2008 
and 86 recent PCs in 2009 (Windows 7 Home Premium). When deciding the max 
value, we ignored a total of 0.8% of the product data, which was data containing an 
extremely large value (over 1.5 times the value of the 90% point), as shown in Table 
4. Self-organizing product maps are shown in Figures 8 to 12. The main features and 
accuracy are shown in Tables 5 to 9, where the underlined features are indispensable 
and more than half of the other features are necessary. The total accuracy is 97.6% for 
digital cameras, 95.8% for automobiles, 95.0% for liquid crystal TVs, 94.0% for 
electronic dictionaries and 96.5% for recent PCs. Therefore, we confirmed the 
effectiveness of our way. 

Table 4. Percentage of ignored product data when deciding the max value. 

Product # of product data # of ignored data % of ignored data 
PCs in 2006 518 0 0 
Digital cameras 882 11 1.2 
Automobiles 568 8 1.4 
Liquid crystal TVs 240 1 0.4 
Electronic 
dictionaries 

335 2 0.6 

PCs in 2009 602 4 0.7 
Total 3,145 26 0.8 

# of product data = (number of products) times (number of continuous features) 
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Fig. 8. Self-organizing map of digital cameras in 2006 with our classified data inputs. 

Table 5. Main features of digital cameras in 2006 in each cluster. 

Cluster #  
(# of products) 

Features Main feature Accuracy 

Cluster D1 (34) over 5,430 thousand (# of pixels) Large number 
of pixels 

34/34 

Cluster D2 (36) under 2.5 inch (monitor size), 
under 221.3 g (weight) 

Small size and 
light weight 

36/36 

Cluster D3 (17) under 5,430 thousand  
(# of pixels), 
over 221.3 g (weight) 

Small number  
of pixels, 
heavy weight 

17/17 

Cluster D4 (30) under 29,733 yen (price) Low price 29/30 
Cluster D5 (9) over 10 times (optical zoom) 10 times  

optical zoom 
7/9 

Total (126)   123/126 = 97.6% 

Table 6. Main features of automobiles in 2006 in each cluster. 

Cluster #  
(# of products) 

Features Main feature Accuracy 

Cluster A1 (66) under 2,205,000 yen (price), 
under 1.437 t (weight), 
under 1,607 cc (emissions) 

Low price,  
light weight  
and low emissions 

62/66 

Cluster A2 (31) 1.438 to 2.172 t (weight), 
1,608 to 2,552 cc (emissions), 
under 13.0 km/l (efficiency) 

Middle weight, 
middle emissions, 
fuel-inefficient 

31/31 

Cluster A3 (23) over 13.0 km/l (efficiency) Fuel-efficient 22/23 
Cluster A4 (22) over 2,205,000 yen (price) High price  21/22 
Total (142)   136/142 = 95.8% 
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Fig. 9. Self-organizing map of automobiles in 2006 with our classified data inputs. 

  
Fig. 10. Self-organizing map of liquid crystal TVs in 2006 with our classified data inputs. 

Table 7. Main features of liquid crystal TVs in 2006 in each cluster. 

Cluster #  
(# of products) 

Features Main feature Accuracy 

Cluster L1 (16) over 39 inches (monitor), 
over 232 W (power) 

Largest size and 
high power consumption 

16/16 

Cluster L2 (17) 27 to 38 inches (monitor), 
137 to 231 W (power) 

Middle size and middle  
power consumption 

15/17 

Cluster L3 (13) under 26 inches (monitor), 
under 136 W (power) 

Small size and 
low power consumption 

12/13 

Cluster L4 (12) under 162,917 yen (price),  
137 to 231 W (power) 

Low price and middle 
power consumption 

12/12 

Cluster L5 (2) under 162,918 yen (price), 
under 27 inches (monitor), 
under 137 W (power) 

Low price,  
smallest size and 
low power consumption 

2/2 

Total (142)   57/60  = 95.0% 
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Table 8. Main features of electronic dictionaries in 2008 in each cluster. 

Cluster #  
(# of products) 

Features Main feature Accuracy 

Cluster E1 (19) 18,581 to 32,538 yen (price), 
196 to 277 g (weight), 
over 4.93 inches (monitor), 
under 37 (dictionaries) 

Middle price, 
middle weight, 
large size, 
few dictionaries 

19/19 

Cluster E2 (20) over 22,550 yen (price), 
over 4.93 inches (monitor) 

High price and  
large size 

17/20 

Cluster E3 (7) under 4.37 inches (monitor) Small size 7/7 
Cluster E4 (7) under 18,580 yen (price), 

4.38 to 4.92 inches (monitor) 
Low price and  
middle size 

3/4 

Cluster E5 (8) over 4.93 inches (monitor), 
over 68 (dictionaries), 

Large size and  
many dictionaries 

8/8 

Cluster E6 (9) under 18,580 yen (price), 
under 4.37 inches (monitor), 
under 37 (dictionaries) 

Low price,  
small size and  
few dictionaries 

9/9 

Total (67)   63/67  = 94.0% 
  
 

  
Fig. 11. Self-organizing map of electronic dictionaries in 2008 with our classified data inputs. 
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Table 9.  Main features of PCs in 2009 in each cluster. 

Cluster #  
(# of products) 

Features Main feature Accuracy 

Cluster N1 (24) 1.74 to 2.26 GHz (CPU), 
248 to 372 GB (HDD), 
2.34 to 3.46 kg (weight) 

Middle performance, 
middle weight 

24/24 

Cluster N2 (25) under 1.73 GHz (CPU), 
under 2.33 kg (weight), 
under 99,959 yen (price) 

Low performance, 
light weight, 
low price 

25/25 

Cluster N3 (21) over 2.27 GHz (CPU), 
over 3 GB (main memory) 

High performance 20/21 

Cluster N4 (11) over 5.0 hours (battery life),  
under 2.33 kg (weight) 

High mobility 10/11 

Cluster N5 (5) over 2.27 GHz (CPU), 
over 3 GB (main memory), 
over 15.6 inches (monitor), 
over 154,158 yen (price), 
Blu-ray drive 

Highest performance  
and high price 

4/5 

Total (86)   83/86 = 96.5% 
  

 
Fig. 12. Self-organizing map of PCs in 2009 with our classified data inputs. 

4   Purchase Decision Making with AHP 

AHP is a multi-criteria decision method that uses hierarchical structures to represent a 
problem and to develop priorities for alternatives based on the user. [Saaty 1980] has 
shown that weighting activities in multi-criteria decision making can be effectively 
dealt with via hierarchical structuring and pairwise comparisons. Pairwise 
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comparisons are based on forming a judgment between two particular elements rather 
than attempting to prioritize an entire list of elements. There are five types of AHP: 
relative measurement, absolute measurement, inner dependence, outer dependence 
and inner-outer dependence [Saaty 1980]. There are two types of ANP (Analytic 
Network Process): feedback system and series system [Saaty 1996]. We can choose 
an appropriate type of AHP or ANP according to the property of a problem. 
Therefore, we choose AHP for decision making. The AHP scales of pairwise 
comparisons are shown in Table 10. 

Table 10. The AHP scales for pairwise comparisons. 

Intensity of importance Definition and explanation 
1 Equal importance 
3 Moderate importance 
5 Essential or strong importance 
7 Demonstrated importance 
9 Extreme importance 

2, 4, 6, 8 Intermediate values between the two adjacent 
judgments when compromise is needed. 

 

 
Fig. 13. AHP model for problem of buying a PC. 

Figure 13 shows the relative measurement AHP model for the problem of buying a 
PC. For the goal on the first level (i.e., the problem of buying a PC), four criteria on 
the second level and five alternatives on the third level were defined. Here, we used 
the following four criteria: low price, high mobility, high performance, and preference 
of design. Here, high mobility means light weight and long battery life. High 
performance means high CPU speed, large main memory capacity, large HDD storage 
capacity and large monitor. We can select some alternatives using the PC maps in 
several ways: from a favorite cluster, from a favorite component map, from a favorite 
brand, from a total map. For example, we selected five alternatives (Table 14) using 
the neighborhood view function of Viscovery SOMine 4.0 software (this function 
displays all neurons that are topologically similar to a reference neuron) from a 
favorite cluster N3 of a recent PC map whose main feature is high performance, as 
shown in Figure 14. Here, PC 1 (FMVNFE70B) is a favorite PC and a reference 
neuron. We referred PC 1 and obtained four neighbor PCs using the maps.  

 
Buying personal computer problem 

 
Price 

 
Mobility

 
Performance

 
Design 

 
PC 1 

 
PC 2

 
PC 3

 
PC 4

 
PC 5 
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Fig. 14. Selection of alternatives using neighborhood view function. 

Then, we applied AHP. The pair comparison matrix among four criteria considered 
by one of us is shown in Table 11. For example, price is strongly important in 
comparison to mobility. Performance is strongly important in comparison to design. 
As a result, performance is most important (its weight = 0.515). Consistency index 
means whether a pair comparison matrix is consistent or not. When the index is lower 
than 0.10, we judge that the pair matrix is consistent [Saaty 1980]. When the index is 
larger than 0.10, pairwise comparisons should be reconsidered. The pair comparison 
matrix for price is shown in Table 12. From the point of view of low price, PC 3 is 
strongly important in comparison to PC 1 and PC 2. The weight of PC 3 was highest 
(its weight = 0.562). The weight matrix for four criteria is shown in Table 13. We 
obtain final results as follows: final results = the weight matrix for four criteria (Table 
13) times the weight matrix among four criteria (Table 11).  For example, the result 
for PC 3 is obtained as follows. 

0.562 * 0.293 + 0.09 * 0.050 + 0.222 * 0.515 + 0.109 * 0.142 = 0.299 
In this case, performance is the most important and price is important. Because PC 

3 is comparatively low price, PC 3 is selected as the final choice (Table 14). 

Table 11. Pair comparison matrix among four criteria. 

   Price Mobility Performance Design Weight 
Price 1 5 1/2 3 0.293 
Mobility 1/5 1 1/7 1/5 0.050 
Performance 2 7 1 5 0.515 
Design 1/3 5 1/5 1 0.142 

Consistency index = 0.064 
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Table 12. Pair comparison matrix for price. 

 PC 1 PC 2 PC 3 PC 4 PC 5 Weight 
PC 1 1 1/2 1/5 3 3 0.125 
PC 2 2 1 1/5 5 5 0.208 
PC 3 5 5 1 7 7 0.562 
PC 4 1/3 1/5 1/7 1 2 0.060 
PC 5 1/3 1/5 1/7 1/2 1 0.045 

Consistency index = 0.066 

Table 13. Weight matrix for four criteria. 

 Price Mobility Performance Design 
PC 1 0.125 0.056 0.222 0.369 
PC 2 0.208 0.373 0.111 0.206 
PC 3 0.562 0.090 0.222 0.109 
PC 4 0.060 0.108 0.222 0.206 
PC 5 0.045 0.373 0.222 0.109 

  
 Table 14. Alternatives and final results of AHP for problem of buying a PC. 

 CPU 
(GHz) 

Mem. 
(GB) 

Monitor 
(inches) 

Weight 
(kg) 

Battery 
(hours) 

Price 
(yen) Results 

PC 1 2.53 4 15.6 2.80 2.1 129,800 0.206 
PC 2 2.53 4 14.1 2.50 3.9 122,280 0.166 
PC 3 2.53 4 15.4 2.70 2.4 109,800 0.299 
PC 4 2.53 4 16.4 3.20 3.0 141,871 0.167 
PC 5 2.66 4 15.6 2.75 4.0 148,799 0.162 

5   Conclusion 

We propose a way of creating product maps with SOM. First, we provide two class 
boundaries which divide the range between the maximum and minimum of an input 
feature value into three equal parts. Second, we create self-organizing product maps 
using the classified data inputs. We applied our way to five kinds of products. For all 
the products, we confirmed the effectiveness of our way. In future work, we will 
apply our way to other products, very large problems (for example, the number of 
products is very large) and other real-world clustering problems. We will investigate a 
way of improving the accuracy of each cluster. We will use other types of AHP and 
ANP for decision making. 
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