Skip to main content

Chance Discovery with Self-Organizing Maps: Discovering Imbalances in Financial Networks

  • Chapter
Book cover Advances in Chance Discovery

Part of the book series: Studies in Computational Intelligence ((SCI,volume 423))

Abstract

In this chapter, we introduce the Self-Organizing Map (SOM) from the viewpoint of Chance Discovery. The SOM paradigm supports several principal parts of Chance Discovery: visualization of temporal multivariate data, discovering rare clusters bridging frequent ones, detecting the degree of event rarity or outliers, and dealing with continuously evolving structures of real world data. Here, we further enhance the standard SOM paradigm by combining it with network analysis. Thus, we enable a simultaneous view of the data topology of the SOM and a network topology of relationships between objects on the SOM. The usefulness of the Self-Organizing Network Map (SONM) for Chance Discovery is demonstrated on a dataset of macro-financial measures. While the standard SOM visualizes country-specific vulnerabilities by positions on the map, the SONM also includes bilateral financial exposures to show the size of linkages between economies and chances of shock propagation from one country to the rest of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ohsawa, Y.: Chance Discovery for Making Decisions in Complex Real World. New Generation Computing 20(2), 143–163 (2002)

    Article  MATH  Google Scholar 

  2. Tsang, E.P.K., Markose, S., Er, H.: Chance discovery in stock index option and future arbitrage. New Mathematics and Natural Computation 1(3), 435–447 (2005)

    Article  MATH  Google Scholar 

  3. Ohsawa, Y.: Modelling the process of chance discovery. In: Ohsawa, Y., McBurney, P. (eds.) Chance Discovery, pp. 2–15. Springer, Heidelberg (2003)

    Google Scholar 

  4. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, California (1993)

    Google Scholar 

  5. Greenacre, M.J.: Correspondence Analysis in Practice. Chapman & Hall, London (2007)

    Book  MATH  Google Scholar 

  6. Ohsawa, Y., Benson, N.E., Yachida, M.: KeyGraph: Automatic Indexing by Cooccurrence Graph based on Building Construction Metaphor. In: Proc. Advanced Digital Library Conference, pp. 12–18. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  7. Abe, A., Hagita, N., Furutani, M., Furutani, Y., Matsuoka, R.: An interface for medical diagnosis support. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 909–916. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 66, 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  9. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  10. Ultsch, A., Siemon, H.P.: Kohonen’s self organizing feature maps for exploratory data analysis. In: Proceedings of the International Conference on Neural Networks, pp. 305–308. Kluwer, Dordrecht (1990)

    Google Scholar 

  11. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

  12. Ward, J.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  13. Matsuo, Y.: Prediction, Forecasting and Chance Discovery. In: Ohsawa, Y., McBurney, P. (eds.) Chance Discovery, pp. 30–43. Springer, Heidelberg (2003)

    Google Scholar 

  14. Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 71(7-9), 1257–1273 (2008)

    Article  Google Scholar 

  15. Goda, S., Ohsawa, Y.: Chance Discovery in Credit Risk Management - Time Order Method and Directed KeyGraph for Estimation of Chain Reaction Bankruptcy Structure. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 247–254. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Sarlin, P., Peltonen, T.A.: Mapping the State of Financial Stability. ECB Working Paper, No. 1382 (September 2011)

    Google Scholar 

  17. Lo Duca, M., Peltonen, T.A.: Macro-Financial Vulnerabilities and Future Financial Stress — Assessing Systemic Risks and Predicting Systemic Events. ECB Working Paper, No. 1311 (2011)

    Google Scholar 

  18. Borio, C., Lowe, P.: Asset Prices, Financial and Monetary Stability: Exploring the Nexusd. BIS Working Papers, No. 114 (2002)

    Google Scholar 

  19. Borio, C., Lowe, P.: Securing Sustainable Price Stability: Should Credit Come Back from the Wilderness? BIS Working Papers, No. 157 (2004)

    Google Scholar 

  20. Sammon Jr., J.W.: A Non-Linear Mapping for Data Structure Analysis. IEEE Transactions on Computers 18(5), 401–409 (1969)

    Article  Google Scholar 

  21. Sarlin, P., Eklund, T.: Fuzzy Clustering of the Self-Organizing Map: Some Applications on Financial Time Series. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 40–50. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Sarlin, P., Eklund, T.: Financial Performance Analysis of European Banks using a Fuzzified Self-Organizing Map. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS, vol. 6882, pp. 186–195. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Sarlin, P., Yao, Z., Eklund, T.: Probabilistic Modeling of State Transitions on the Self-Organizing Map: Some Temporal Financial Applications. In: Proc. of the 45th Hawaii International Conference on System Sciences, HICSS 2012 (forthcoming, 2012)

    Google Scholar 

  24. Chappell, G., Taylor, J.: The temporal Kohonen map. Neural Networks 6, 441–445 (1993)

    Article  Google Scholar 

  25. Strickert, M., Hammer, B.: Merge SOM for temporal data. Neurocomputing 64, 39–72 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sarlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarlin, P. (2013). Chance Discovery with Self-Organizing Maps: Discovering Imbalances in Financial Networks. In: Ohsawa, Y., Abe, A. (eds) Advances in Chance Discovery. Studies in Computational Intelligence, vol 423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30114-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30114-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30113-1

  • Online ISBN: 978-3-642-30114-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics